Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Mol Neurobiol. 2009 Sep;29(6-7):981-90. doi: 10.1007/s10571-009-9385-3. Epub 2009 Mar 21.

Immunohistochemical study of postnatal neurogenesis after whole-body exposure to electromagnetic fields: evaluation of age- and dose-related changes in rats.

Author information

  • 1Institute of Neurobiology, Center of Excellence, Slovak Academy of Sciences, Kosice 040 01, Slovak Republic. orendac@saske.sk

Abstract

It is well established that strong electromagnetic fields (EMFs) can give rise to acute health effects, such as burns, which can be effectively prevented by respecting exposure guidelines and regulations. Current concerns are instead directed toward the possibility that long-term exposure to weak EMF might have detrimental health effects due to some biological mechanism, to date unknown. (1) The possible risk due to pulsed EMF at frequency 2.45 GHz and mean power density 2.8 mW/cm(2) on rat postnatal neurogenesis was studied in relation to the animal's age, duration of the exposure dose, and post-irradiation survival. (2) Proliferating cells marker, BrdU, was used to map age- and dose-related immunohistochemical changes within the rostral migratory stream (RMS) after whole-body exposure of newborn (P7) and senescent (24 months) rats. (3) Two dose-related exposure patterns were performed to clarify the cumulative effect of EMF: short-term exposure dose, 2 days irradiation (4 h/day), versus long-term exposure dose, 3 days irradiation (8 h/day), both followed by acute (24 h) and chronic (1-4 weeks) post-irradiation survival. (4) We found that the EMF induces significant age- and dose-dependent changes in proliferating cell numbers within the RMS. Our results indicate that the concerns about the possible risk of EMF generated in connection with production, transmission, distribution, and the use of electrical equipment and communication sets are justified at least with regard to early postnatal neurogenesis.

PMID:
19305951
DOI:
10.1007/s10571-009-9385-3
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center