Format

Send to

Choose Destination
J Med Chem. 2009 Apr 23;52(8):2407-19. doi: 10.1021/jm8014876.

Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a new scaffold to develop potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation, and ligand-receptor modeling studies.

Author information

1
Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Dipartimento di Scienze Farmaceutiche, Universita di Firenze, Polo Scientifico, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy. vittoria.colotta@unifi.it

Abstract

The paper describes a new class of human (h) A(3) adenosine receptor antagonists, the 2-arylpyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one derivatives (PTP), either 4-oxo (1-6, series A) or 4-amino-substituted (7-20, series B). In both series A and B, substituents able to act as hydrogen bond acceptors (OMe, OH, F, COOEt) were inserted on the 2-phenyl ring. In series B, cycloalkyl and acyl residues were introduced on the 4-amino group. Some of the new derivatives showed high hA(3) AR affinities (K(i) < 50 nM) and selectivities vs both hA(1) and hA(2A) receptors. The selected 4-benzoylamino-2-(4-methoxyphenyl)pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one (18), tested in an in vitro rat model of cerebral ischemia, proved to be effective in preventing the failure of synaptic activity induced by oxygen and glucose deprivation in the hippocampus. Molecular docking of this new class of hA(3) AR antagonists was carried out to depict their hypothetical binding mode to our refined model of hA(3) receptor.

PMID:
19301821
DOI:
10.1021/jm8014876
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center