Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2009 Apr 1;182(7):4357-67. doi: 10.4049/jimmunol.0802557.

Airway and lung pathology due to mucosal surface dehydration in {beta}-epithelial Na+ channel-overexpressing mice: role of TNF-{alpha} and IL-4R{alpha} signaling, influence of neonatal development, and limited efficacy of glucocorticoid treatment.

Author information

1
Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, 27599, USA. alessandra_livraghi@med.unc.edu

Abstract

Overexpression of the epithelial Na(+) channel beta subunit (Scnn1b gene, betaENaC protein) in transgenic (Tg) mouse airways dehydrates mucosal surfaces, producing mucus obstruction, inflammation, and neonatal mortality. Airway inflammation includes macrophage activation, neutrophil and eosinophil recruitment, and elevated KC, TNF-alpha, and chitinase levels. These changes recapitulate aspects of complex human obstructive airway diseases, but their molecular mechanisms are poorly understood. We used genetic and pharmacologic approaches to identify pathways relevant to the development of Scnn1b-Tg mouse lung pathology. Genetic deletion of TNF-alpha or its receptor, TNFR1, had no measurable effect on the phenotype. Deletion of IL-4Ralpha abolished transient mucous secretory cell (MuSC) abundance and eosinophilia normally observed in neonatal wild-type mice. Similarly, IL-4Ralpha deficiency decreased MuSC and eosinophils in neonatal Scnn1b-Tg mice, which correlated with improved neonatal survival. However, chronic lung pathology in adult Scnn1b-Tg mice was not affected by IL-4Ralpha status. Prednisolone treatment ablated eosinophilia and MuSC in adult Scnn1b-Tg mice, but did not decrease mucus plugging or neutrophilia. These studies demonstrate that: 1) normal neonatal mouse airway development entails an IL-4Ralpha-dependent, transient abundance of MuSC and eosinophils; 2) absence of IL-4Ralpha improved neonatal survival of Scnn1b-Tg mice, likely reflecting decreased formation of asphyxiating mucus plugs; and 3) in Scnn1b-Tg mice, neutrophilia, mucus obstruction, and airspace enlargement are IL-4Ralpha- and TNF-alpha-independent, and only MuSC and eosinophilia are sensitive to glucocorticoids. Thus, manipulation of multiple pathways will likely be required to treat the complex pathogenesis caused by airway surface dehydration.

PMID:
19299736
PMCID:
PMC2659461
DOI:
10.4049/jimmunol.0802557
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center