Send to

Choose Destination
See comment in PubMed Commons below
Science. 2009 Mar 20;323(5921):1575-8. doi: 10.1126/science.1168312.

Giant-stroke, superelastic carbon nanotube aerogel muscles.

Author information

Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083, USA.


Improved electrically powered artificial muscles are needed for generating force, moving objects, and accomplishing work. Carbon nanotube aerogel sheets are the sole component of new artificial muscles that provide giant elongations and elongation rates of 220% and (3.7 x 10(4))% per second, respectively, at operating temperatures from 80 to 1900 kelvin. These solid-state-fabricated sheets are enthalpic rubbers having gaslike density and specific strength in one direction higher than those of steel plate. Actuation decreases nanotube aerogel density and can be permanently frozen for such device applications as transparent electrodes. Poisson's ratios reach 15, a factor of 30 higher than for conventional rubbers. These giant Poisson's ratios explain the observed opposite sign of width and length actuation and result in rare properties: negative linear compressibility and stretch densification.

Comment in

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center