Format

Send to

Choose Destination
See comment in PubMed Commons below
J Lipid Res. 2009 Jul;50(7):1395-408. doi: 10.1194/jlr.M800574-JLR200. Epub 2009 Mar 17.

Suppression of superoxide anion and elastase release by C18 unsaturated fatty acids in human neutrophils.

Author information

1
Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan. htl@mail.cgu.edu.tw

Abstract

The structure-activity relationship of 18-carbon fatty acids (C(18) FAs) on human neutrophil functions and their underlying mechanism were investigated. C(18) unsaturated (U)FAs potently inhibited superoxide anion production, elastase release, and Ca(2+) mobilization at concentrations of <10 microM in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils. However, neither saturated FA nor esterified UFAs inhibited these neutrophil functions. The inhibitory potencies of C(18) UFAs decreased in the following order: C(18):1 > C(18):2 > C(18):3 > C(18):4. Notably, the potency of attenuating Ca(2+) mobilization was closely correlated with decreasing cellular responses. The inhibitions of Ca(2+) mobilization by C(18) UFAs were not altered in a Ca(2+)-containing Na(+)-deprived medium. Significantly, C(18) UFAs increased the activities of plasma membrane Ca(2+)-ATPase (PMCA) in neutrophils and isolated cell membranes. In contrast, C(18) UFAs failed to alter either the cAMP level or phosphodiesterase activity. Moreover, C(18) UFAs did not reduce extracellular Ba(2+) entry in FMLP- and thapsigargin-activated neutrophils. In summary, the inhibition of neutrophil functions by C(18) UFAs is attributed to the blockade of Ca(2+) mobilization through modulation of PMCA. We also suggest that both the free carboxy group and the number of double bonds of the C(18) UFA structure are critical to providing the potent anti-inflammatory properties in human neutrophils.

PMID:
19295184
PMCID:
PMC2694338
DOI:
10.1194/jlr.M800574-JLR200
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center