Send to

Choose Destination
See comment in PubMed Commons below
Ecology. 2009 Jan;90(1):3-9.

Modeling misidentification errors in capture-recapture studies using photographic identification of evolving marks.

Author information

  • 1Biomathematics Graduate Program and Department of Zoology, North Carolina State University, Raleigh, North Carolina 27695-8203, USA.


Misidentification of animals is potentially important when naturally existing features (natural tags) are used to identify individual animals in a capture-recapture study. Photographic identification (photoID) typically uses photographic images of animals' naturally existing features as tags (photographic tags) and is subject to two main causes of identification errors: those related to quality of photographs (non-evolving natural tags) and those related to changes in natural marks (evolving natural tags). The conventional methods for analysis of capture-recapture data do not account for identification errors, and to do so requires a detailed understanding of the misidentification mechanism. Focusing on the situation where errors are due to evolving natural tags, we propose a misidentification mechanism and outline a framework for modeling the effect of misidentification in closed population studies. We introduce methods for estimating population size based on this model. Using a simulation study, we show that conventional estimators can seriously overestimate population size when errors due to misidentification are ignored, and that, in comparison, our new estimators have better properties except in cases with low capture probabilities (< 0.2) or low misidentification rates (< 2.5%).

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center