Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2009 Mar 25;131(11):3875-7. doi: 10.1021/ja809459e.

Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties.

Author information

Center for Reticular Chemistry, Department of Chemistry and Biochemistry, University of California Los Angeles, 607 East Charles E. Young Drive, Los Angeles, California 90095, USA.


Five new crystalline zeolitic imidazolate frameworks (ZIFs), ZIF-78 to -82, were prepared from zinc(II) nitrate and mixtures of 2-nitroimidazole and five different functionalized imidazoles and were found to have the GME topology. These structures, along with three previously reported GME ZIFs, constitute a series of highly porous materials with Brunauer-Emmet-Teller surface areas ranging from 620 to 1730 m(2)/g. The pore diameters and apertures vary incrementally from 7.1 to 15.9 A and 3.8 to 13.1 A, respectively, and the functionalities decorating the pores vary from polar cyano- and nitro- groups to nonpolar alkyl groups. The variability expressed in these materials makes them highly attractive for study as gas-separation media. Selectivity values calculated for separation of CO(2) and CH(4) predict that the ZIFs with polar functionality, ZIF-78 (10.6:1) and -82 (9.6:1), retain CO(2) gas to a greater degree than the other members of the GME series and BPL-activated carbon. These predictions are borne out in dynamic breakthrough studies, which confirm the increased capacity of ZIF-78 and -82 and demonstrate the promise of this class of materials.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center