Format

Send to

Choose Destination
See comment in PubMed Commons below
Arthritis Res Ther. 2009;11(2):R40. doi: 10.1186/ar2648. Epub 2009 Mar 16.

Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes.

Author information

1
Laboratoire Physiopathologie des Arthrites, Université de Strasbourg, UFR Sciences Pharmaceutiques, Illkirch, France. laurentmesser@yahoo.fr

Abstract

INTRODUCTION:

In the present study, we investigated the ability of microparticles isolated from synovial fluids from patients with rheumatoid arthritis or osteoarthritis to induce the synthesis and release of key cytokines of B-lymphocyte modulation such as B cell-activating factor, thymic stroma lymphopoietin, and secretory leukocyte protease inhibitor by rheumatoid fibroblast-like synoviocytes.

METHODS:

Microparticles were analyzed in synovial fluids from patients with rheumatoid arthritis, osteoarthritis, microcristalline arthritis, and reactive arthritis. In addition, microparticle release after activation from various cell lines (CEM lymphocyte and THP-1 cells) was assessed. Microparticles were isolated by differential centrifugation, and quantitative determinations were carried out by prothrombinase assay after capture on immobilized annexin V. B cell-activating factor, thymic stroma lymphopoietin, and secretory leukocyte protease inhibitor release was evaluated by enzyme-linked immunosorbent assay.

RESULTS:

Microparticles isolated from synovial fluids obtained from rheumatoid arthritis and osteoarthritis patients or microparticles derived from activated THP-1 cells were able to induce B cell-activating factor, thymic stroma lymphopoietin, and secretory leukocyte protease inhibitor release by rheumatoid arthritis fibroblast-like synoviocytes. Conversely, CEM-lymphocytes-derived microparticles generated by treatment with a combination of PHA, PMA and Adt-D did not promote the release of B cell-activating factor but favored the secretion of thymic stroma lymphopoietin and secretory leukocyte protease inhibitor by rheumatoid arthritis fibrobast-like synoviocytes. However, microparticles isolated from actinomycin D-treated CEM lymphocytes were not able to induce B cell-activating factor, thymic stroma lymphopoietin, or secretory leukocyte protease inhibitor release, indicating that microparticles derived from apoptotic T cells do not function as effectors in B-cell activation.

CONCLUSIONS:

These results demonstrate that microparticles are signalling structures that may act as specific conveyors in the triggered induction and amplification of autoimmunity. This study also indicates that microparticles have differential effects in the crosstalk between B lymphocytes and target cells of autoimmunity regarding the parental cells from which they derive.

PMID:
19291304
PMCID:
PMC2688187
DOI:
10.1186/ar2648
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center