Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2009 May 15;284(20):13513-8. doi: 10.1074/jbc.C900031200. Epub 2009 Mar 16.

Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase.

Author information

Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Aarhus, Denmark.


We have determined the structure of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in an E2.P(i)-like form stabilized as a complex with MgF(4)(2-), an ATP analog, adenosine 5'-(beta,gamma-methylene)triphosphate (AMPPCP), and cyclopiazonic acid (CPA). The structure determined at 2.5A resolution leads to a significantly revised model of CPA binding when compared with earlier reports. It shows that a divalent metal ion is required for CPA binding through coordination of the tetramic acid moiety at a characteristic kink of the M1 helix found in all P-type ATPase structures, which is expected to be part of the cytoplasmic cation access pathway. Our model is consistent with the biochemical data on CPA function and provides new measures in structure-based drug design targeting Ca(2+)-ATPases, e.g. from pathogens. We also present an extended structural basis of ATP modulation pinpointing key residues at or near the ATP binding site. A structural comparison to the Na(+),K(+)-ATPase reveals that the Phe(93) side chain occupies the equivalent binding pocket of the CPA site in SERCA, suggesting an important role of this residue in stabilization of the potassium-occluded E2 state of Na(+),K(+)-ATPase.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center