Format

Send to

Choose Destination
See comment in PubMed Commons below
Breast Cancer Res Treat. 2010 Feb;119(3):575-91. doi: 10.1007/s10549-009-0355-8. Epub 2009 Mar 15.

Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance.

Author information

1
Experimental Therapeutics, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3XF, UK.

Abstract

Caveolin-1 displays both tumour-suppressor and tumour-promoter properties in breast cancer. Using characterised preclinical cell models for the transition of oestrogen-sensitive (WT-MCF-7 cells) to a tamoxifen-resistant (TAM-R cells) phenotype we examined the role caveolin-1 in the development of hormone-resistant breast cancer. The WT-MCF-7 cells showed abundant expression of caveolin-1 which potentiated oestrogen-receptor (ERalpha) signalling and promoted cell growth despite caveolin-1 mediating inhibition of ERK signalling. In TAM-R cells caveolin-1 expression was negligible, repressed by EGF-R/ERK signalling. Pharmacological inhibition of EGFR/ERK in TAM-R cells restored caveolin-1 and also resulted in the emergence of pools of phosphorylated caveolin-1. WT-MCF-7 cells exposed to tamoxifen for upto 12 weeks displayed increased caveolin-1 (peaking by week 2) followed (after week 8) by a marked decrease as the cells progress to develop a stable tamoxifen-resistant phenotype. The targeted down-regulation (siRNA) of caveolin-1 in WT-MCF-7 cells reduced growth but did not affect their sensitivity to tamoxifen, suggesting loss of caveolin-1 alone is not sufficient to confer tamoxifen-resistance. Hyperactivation of EGFR/ERK is a feature of tamoxifen-resistant breast cancer cells, a principal driver of cell growth. Recombinant expression of caveolin-1 in TAM-R cells did not affect EGFR/ERK activity, potentially due to mislocalisation of caveolin-1 through hyperactivation of the mTOR pathway or altered caveolin-1 phosphorylation. This work defines a novel role for caveolin-1 with implications for the clinical course of breast cancer and identifies caveolin-1 as a potential drug target for the treatment of early oestrogen-dependent breast cancers. Further, the loss of caveolin-1 may have benefit as a molecular signature for tamoxifen resistance.

PMID:
19288272
DOI:
10.1007/s10549-009-0355-8
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center