Send to

Choose Destination
Stroke. 2009 May;40(5):1827-33. doi: 10.1161/STROKEAHA.108.536805. Epub 2009 Mar 12.

Flow-induced dilation is mediated by Akt-dependent activation of endothelial nitric oxide synthase-derived hydrogen peroxide in mouse cerebral arteries.

Author information

Institut de Cardiologie de Montréal, Centre de Recherche, Montréal, Québec, Canada.



Endothelial nitric oxide synthase produces superoxide under physiological conditions leading to hydrogen peroxide (H(2)O(2)) -dependent dilations to acetylcholine in isolated mouse cerebral arteries. The purpose of this study was to investigate whether H(2)O(2) was involved in flow-mediated dilation (FMD).


Cerebral arteries were isolated from 12+/-2-week-old C57Bl/6 male mice. FMD (0 to 10 microL/min, 2-microL step increase at constant internal pressure) was induced in vessels preconstricted with phenylephrine (30 micromol/L). Simultaneously to diameter acquisition, H(2)O(2) or nitric oxide production was detected by the fluorescent dyes CMH(2)CFDA or 4,5-diaminofluorescein diacetate, respectively. Results are expressed as mean+/-SEM of 6 to 8 mice.


FMD (at 10 microL/min, 25+/-3% of maximal diameter) was prevented (P<0.05) by endothelium removal (6+/-1%) or endothelial nitric oxide synthase inhibition with N-nitro-L-arginine (11+/-1%) but not by the specific nitric oxide scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl3-oxide (24+/-3%). Addition of PEG-catalase and silver diethyl dithio-carbamate (superoxide dismutase inhibitor) reduced (P<0.05) FMD to 10+/-2% and 15+/-1%, respectively. Simultaneously to FMD, H(2)O(2)-associated rise in fluorescence (+133+/-19 a.u.) was prevented by N-nitro-L-arginine, PEG-catalase, and silver diethyl dithio-carbamate (+55+/-10, +64+/-4, and +50+/-10 a.u., respectively; P<0.05). Inhibition of FMD by PEG-catalase was fully restored by the addition of tetrahydrobiopterin, a cofactor of endothelial nitric oxide synthase (23+/-3%); this functional reversal in dilation was associated with the simultaneous increase in nitric oxide-associated fluorescence (+418+/-58 a.u., P<0.05), which was prevented by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl3-oxide (+93+/-26 a.u.). Akt inhibition with triciribine prevented FMD and H(2)O(2)-associated rise in fluorescence (3+/-1% and +23+/-4% a.u., respectively; P<0.05), but not acetylcholine-induced dilation.


In healthy C57Bl/6 mouse cerebral arteries, Akt-dependent activation of endothelial nitric oxide synthase-derived H(2)O(2) mediates flow-dependent dilation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center