Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2009 Jun 16;161(1):269-92. doi: 10.1016/j.neuroscience.2009.02.075. Epub 2009 Mar 12.

Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice.

Author information

INSERM U628, Lyon, F-69373, France and Claude Bernard University Lyon 1, 8 Avenue Rockefeller, Lyon Cedex 08, F-69373, France.


We recorded 872 single units across the complete sleep-waking cycle in the mouse preoptic area (POA) and basal forebrain (BFB), which are deeply involved in the regulation of sleep and wakefulness (W). Of these, 552 were sleep-active, 96 were waking-active, 106 were active during both waking and paradoxical sleep (PS), and the remaining 118 were state-indifferent. Among the 872, we distinguished slow-wave sleep (SWS)-specific, SWS/PS-specific, PS-specific, W-specific, and W/PS-specific neurons, the last group being further divided into specific tonic type I slow (TI-Ss) and specific tonic type I rapid (TI-Rs) both discharging specifically in association with cortical activation during both W and PS. Both the SWS/PS-specific and PS-specific neurons were distributed throughout a wide region of the POA and BFB, whereas the SWS-specific neurons were mainly located in the middle and ventral half of the POA and adjacent BFB, as were the W-specific and W/PS-specific neurons. At the transition from waking to sleep, the majority of SWS-specific and all SWS/PS-specific neurons fired after the onset of cortical synchronization (deactivation), whereas all W-specific and W/PS-specific neurons showed a significant decrease in firing rate >0.5 s before the onset. At the transition from SWS to W, the sleep-specific neurons showed a significant decrease in firing rate 0.1 s before the onset of cortical activation, while the W-specific and W/PS-specific neurons fired >0.5 s before the onset. TI-Ss neurons were characterized by a triphasic broad action potential, slow single isolated firing, and an antidromic response to cortical stimulation, whereas TI-Rs neurons were characterized by a narrow action potential and high frequency burst discharge in association with theta waves in PS. These data suggest that the forebrain sleep/waking switch is regulated by opposing activities of sleep-promoting (SWS-specific and SWS/PS-specific) and waking-promoting (W-specific and W/PS-specific) neurons, that the initiation of sleep is caused by decreased activity of the waking-promoting neurons (disfacilitation), and that the W/PS-specific neurons are deeply involved in the processes of cortical activation/deactivation.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for HAL archives ouvertes
    Loading ...
    Support Center