Send to

Choose Destination
J Mater Sci Mater Med. 2009 Aug;20(8):1585-94. doi: 10.1007/s10856-009-3724-2. Epub 2009 Mar 13.

Comparison of failure mechanisms for cements used in skeletal luting applications.

Author information

Clinical Materials Unit, Materials & Surface Science Institute, University of Limerick, National Technological Park, Limerick, Ireland.


Glass Polyalkenoate Cements (GPCs) based on strontium calcium zinc silicate (Sr-Ca-Zn-SiO(2)) glasses and low molecular weight poly(acrylic acid) (PAA) have been shown to exhibit suitable compressive strength (65 MPa) and flexural strength (14 MPa) for orthopaedic luting applications. In this study, two such GPC formulations, alongside two commercial cements (Simplex P and Hydroset) were examined. Fracture toughness and tensile bond strength to sintered hydroxyapatite and a biomedical titanium alloy were examined. Fracture toughness of the commercial Poly(methyl methacrylate) cement, Simplex P, (3.02 MPa m(1/2)) was superior to that of the novel GPC (0.36 MPa m(1/2)) and the commercial calcium phosphate cement, Hydroset, for which no significant fracture toughness was obtained. However, tensile bond strengths of the novel GPCs (0.38 MPa), after a prolonged period (30 days), were observed to be superior to commercial controls (Simplex P: 0.07 MPa, Hydroset: 0.16 MPa).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center