Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Renal Physiol. 2009 Aug;297(2):F244-56. doi: 10.1152/ajprenal.00033.2009. Epub 2009 Mar 11.

Autophagy: molecular machinery, regulation, and implications for renal pathophysiology.

Author information

Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood Department of Veterans Affairs Medical Center, Augusta, Georgia 30912, USA.


Autophagy is a cellular process of "self-eating." During autophagy, a portion of cytoplasm is enveloped in double membrane-bound structures called autophagosomes, which undergo maturation and fusion with lysosomes for degradation. At the core of the molecular machinery of autophagy is a specific family of genes or proteins called Atg. Originally identified in yeast, Atg orthologs are now being discovered in mammalian cells and have been shown to play critical roles in autophagy. Traditionally, autophagy is recognized as a cellular response to nutrient deprivation or starvation whereby cells digest cytoplasmic organelles and macromolecules to recycle nutrients for self-support. However, studies during the last few years have indicated that autophagy is a general cellular response to stress. Interestingly, depending on experimental conditions, especially stress levels, autophagy can directly induce cell death or act as a mechanism of cell survival. In this review, we discuss the molecular machinery, regulation, and function of autophagy. In addition, we analyze the recent findings of autophagy in renal systems and its possible role in renal pathophysiology.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center