Format

Send to

Choose Destination
Mol Cells. 2009 Feb 28;27(2):183-90. doi: 10.1007/s10059-009-0023-1. Epub 2009 Feb 20.

Analysis of phosphorylation of the BRI1/BAK1 complex in arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling.

Author information

1
Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea.

Abstract

The plasma membrane-localized BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED KINASE1 (BAK1) are a well-known receptor pair involved in brassinosteroids (BR) signaling in Arabidposis. The formation of a receptor complex in response to BRs and the subsequent activation of cytoplasmic domain kinase activity share mechanistic characteristics with animal receptor kinases. Here, we demonstrate that BRI1 and BAK1 are BR-dependently phosphorylated, and that phosphorylated forms of the two proteins persist for different lengths of time. Mutations of either protein abolished phosphorylation of the counterpart protein, implying transphosphorylation of the receptor kinases. To investigate the specific amino acids critical for formation of the receptor complex and activation of BAK1 kinase activity, we expressed several versions of BAK1 in yeast and plants. L32E and L46E substitutions resulted in a loss of binding of BAK1 to BRI1, and threonine T455 was essential for the kinase activity of BAK1 in yeast. Transgenic bri1 mutant plants overexpressing BAK1(L46E) displayed reduced apical dominance and seed development. In addition, transgenic wild type plants overexpressing BAK1(T455A) lost the phosphorylation activity normally exhibited in response to BL, leading to semi-dwarfism. These results suggest that BAK1 is a critical component regulating the duration of BR efficacy, even though it cannot directly bind BRs in plants.

PMID:
19277500
DOI:
10.1007/s10059-009-0023-1
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Publishing M2Community
Loading ...
Support Center