Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Hum Genet. 2009 Oct;17(10):1231-40. doi: 10.1038/ejhg.2009.15. Epub 2009 Mar 11.

Using biological networks to search for interacting loci in genome-wide association studies.

Author information

1
Bioinformatics Research Center, University of Aarhus, C. F. Møllers Alle, Aarhus C, Denmark. mathieu.emily@uhb.fr

Abstract

Genome-wide association studies have identified a large number of single-nucleotide polymorphisms (SNPs) that individually predispose to diseases. However, many genetic risk factors remain unaccounted for. Proteins coded by genes interact in the cell, and it is most likely that certain variants mainly affect the phenotype in combination with other variants, termed epistasis. An exhaustive search for epistatic effects is computationally demanding, as several billions of SNP pairs exist for typical genotyping chips. In this study, the experimental knowledge on biological networks is used to narrow the search for two-locus epistasis. We provide evidence that this approach is computationally feasible and statistically powerful. By applying this method to the Wellcome Trust Case-Control Consortium data sets, we report four significant cases of epistasis between unlinked loci, in susceptibility to Crohn's disease, bipolar disorder, hypertension and rheumatoid arthritis.

PMID:
19277065
PMCID:
PMC2986645
DOI:
10.1038/ejhg.2009.15
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center