Send to

Choose Destination
Neuroscience. 2009 May 5;160(2):501-7. doi: 10.1016/j.neuroscience.2009.03.001. Epub 2009 Mar 9.

Activation of Gi induces mechanical hyperalgesia poststress or inflammation.

Author information

Department of Medicine, Program in Oral and Maxillofacial Surgery, Room C555, 521 Parnassus Avenue, San Francisco, CA 94143, USA.


In studies of the role of primary afferent nociceptor plasticity in the transition from acute to chronic pain we recently reported that exposure to unpredictable sound stress or a prior inflammatory response induces long-term changes in the second messenger signaling pathway, in nociceptors, mediating inflammatory hyperalgesia; this change involves a switch from a G(s)-cAMP-PKA to a G(i)-PKCepsilon signaling pathway. To more directly study the role of G(i) in mechanical hyperalgesia we evaluated the nociceptive effect of the G(i) activator, mastoparan. Intradermal injection of mastoparan in the rat hind paw induces dose-dependent (0.1 ng-1 microg) mechanical hyperalgesia. The highly selective inhibitors of G(i), pertussis toxin, and of protein kinase C epsilon (PKCepsilon), PKCepsilonV(1-2), both markedly attenuate mastoparan-induced hyperalgesia in stressed rats but had no effect on mastoparan-induced hyperalgesia in unstressed rats. Similar effects were observed, at the site of nociceptive testing, after recovery from carrageenan-induced inflammation. These studies provide further confirmation for a switch to a G(i)-activated and PKCepsilon-dependent signaling pathway in primary mechanical hyperalgesia, induced by stress or inflammation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center