Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2009 May;29(10):2704-15. doi: 10.1128/MCB.01811-08. Epub 2009 Mar 9.

The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans.

Author information

  • 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-2520, USA. keith.p.choe@vanderbilt.edu

Abstract

The transcription factor SKN-1 protects Caenorhabditis elegans from stress and promotes longevity. SKN-1 is regulated by diverse signals that control metabolism, development, and stress responses, but the mechanisms of regulation and signal integration are unknown. We screened the C. elegans genome for regulators of cytoprotective gene expression and identified a new SKN-1 regulatory pathway. SKN-1 protein levels, nuclear accumulation, and activity are repressed by the WD40 repeat protein WDR-23, which interacts with the CUL-4/DDB-1 ubiquitin ligase to presumably target the transcription factor for proteasomal degradation. WDR-23 regulates SKN-1 target genes downstream from p38 mitogen-activated protein kinase, glycogen synthase kinase 3, and insulin-like receptor pathways, suggesting that phosphorylation of SKN-1 may function to modify its interaction with WDR-23 and/or CUL-4/DDB-1. These findings define the mechanism of SKN-1 accumulation in the cell nucleus and provide a new mechanistic framework for understanding how phosphorylation signals are integrated to regulate stress resistance and longevity.

PMID:
19273594
PMCID:
PMC2682033
DOI:
10.1128/MCB.01811-08
[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center