Format

Send to

Choose Destination
See comment in PubMed Commons below
Drug Resist Updat. 2009 Feb-Apr;12(1-2):28-41. doi: 10.1016/j.drup.2009.02.001. Epub 2009 Mar 9.

Mutational 'hot-spots' in mammalian, bacterial and protozoal dihydrofolate reductases associated with antifolate resistance: sequence and structural comparison.

Author information

  • 1Département de biochimie, Université de Montréal, Canada.

Abstract

Human dihydrofolate reductase (DHFR) is a primary target for antifolate drugs in cancer treatment, while DHFRs from Plasmodium falciparum, Plasmodium vivax and various bacterial species are primary targets in the treatment of malaria and bacterial infections. Mutations in each of these DHFRs can result in resistance towards clinically relevant antifolates. We review the structural and functional impact of active-site mutations with respect to enzyme activity and antifolate resistance of DHFRs from mammals, protozoa and bacteria. The high structural homology between DHFRs results in a number of cross-species, active-site 'hot-spots' for broad-based antifolate resistance. In addition, we identify mutations that confer species-specific resistance, or antifolate-specific resistance. This comparative review of antifolate binding in diverse species provides new insights into the relationship between antifolate design and the development of mutational resistance. It also presents avenues for designing antifolate-resistant mammalian DHFRs as chemoprotective agents.

PMID:
19272832
DOI:
10.1016/j.drup.2009.02.001
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center