Format

Send to

Choose Destination
See comment in PubMed Commons below
Methods Mol Biol. 2009;532:309-22. doi: 10.1007/978-1-60327-853-9_18.

Interdomain transfers of sugar transporters overcome barriers to gene expression.

Author information

  • 1Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.

Abstract

Horizontal gene transfer (HGT) is nature's mechanism for sharing evolved physiological traits among the members of microbial communities. The extent to which such transfers can be successful is best illustrated by the fact that Archaea-derived genes are found in many bacterial genomes, particularly those in the hyperthermophile Thermotoga maritima. The success of these intergenomic transfers depends upon the successful transcription of the newly acquired archaeal genes using a bacterial transcription machinery that does not recognize archaeal transcriptional signals. To examine how nature solves this problem, we looked to the T. maritima genome for examples of interdomain transfers. Here we lay the groundwork to examine this problem by more clearly delineating the phylogenetic history of Archaea-derived transporter genes in this genome. We find that five of these polysaccharide transporters were derived from the Archaea and one came from the Archaea after that lineage inherited it from the Bacteria. These data can be used for more detailed examinations of the recombinations that allowed these transporters to be expressed in a bacterial host. This work will guide examinations of the genome sequences from other members of the Thermotogales, which will become available.

PMID:
19271193
DOI:
10.1007/978-1-60327-853-9_18
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center