Send to

Choose Destination
J Gastroenterol. 2009;44(4):249-60. doi: 10.1007/s00535-009-0013-2. Epub 2009 Mar 7.

Signal transduction in pancreatic stellate cells.

Author information

Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.


Pancreatic fibrosis is a characteristic feature of chronic pancreatitis and of desmoplastic reaction associated with pancreatic cancer. For over a decade, there has been accumulating evidence that activated pancreatic stellate cells (PSCs) play a pivotal role in the development of pancreatic fibrosis in these pathological settings. In response to pancreatic injury or inflammation, quiescent PSCs undergo morphological and functional changes to become myofibroblast-like cells, which express alpha-smooth muscle actin (alpha-SMA). Activated PSCs actively proliferate, migrate, produce extracellular matrix (ECM) components, such as type I collagen, and express cytokines and chemokines. In addition, PSCs might play roles in local immune functions and angiogenesis in the pancreas. Following the initiation of activation, if the inflammation and injury are sustained or repeated, PSCs activation is perpetuated, leading to the development of pancreatic fibrosis. From this point of view, pancreatic fibrosis can be defined as pathological changes of ECM composition in the pancreas both in quantity and quality, resulting from perpetuated activation of PSCs. Because the activation and cell functions in PSCs are regulated by the dynamic but coordinated activation of intracellular signaling pathways, identification of signaling molecules that play a crucial role in PSCs activation is important for the development of anti-fibrosis therapy. Recent studies have identified key mediators of stimulatory and inhibitory signals. Signaling molecules, such as peroxisome proliferator-activated receptor-gamma (PPAR-gamma), Rho/Rho kinase, nuclear factor-kappaB (NF-kappaB), mitogen-activated protein (MAP) kinases, phosphatidylinositol 3 kinase (PI3K), Sma- and Mad-related proteins, and reactive oxygen species (ROS) might be candidates for the development of anti-fibrosis therapy targeting PSCs.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center