Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2009 Apr 13;10(4):916-22. doi: 10.1021/bm801431c.

Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation?

Author information

  • 1Laboratory of Biomaterials, Swiss Federal Laboratories for Materials Testing and Research (Empa), CH-9014 St. Gallen, Switzerland. qun.ren@empa.ch

Abstract

The regulation of medium-chain-length polyhydroxyalkanoates (mcl-PHA) metabolism in Pseudomonas putida GPo1 was studied by analysis of enzymes bound to PHA granules and enzymes involved in fatty acid oxidation. N-terminal sequencing of granule-bound enzymes revealed the presence of PHA polymerase (PhaC) and PHA depolymerase (PhaZ) and an acyl-CoA synthetase (ACS1), which recently was found to be associated with PHA granules by in vivo study. The acs1 knockout mutant accumulated 30-50% less PHA than its parental strain, confirming the involvement of ACS1 in PHA metabolism. Isolated PHA granules showed both PhaC and PhaZ activities. PhaC activity was found to be sensitive to the ratio of [R-3-hydroxyacyl-CoA]/[CoA] in which free CoA was a mild competitive inhibitor. Fatty acid oxidation was regulated by the [acetyl-CoA]/[CoA] and [NADH]/[NAD] ratios, with high ratios resulting in accumulation and low ratios leading to rapid oxidation of 3-hydroxyacyl-CoA. These results suggest that PHA metabolism is likely to be controlled by the [acetyl-CoA]/[CoA] and [NADH]/[NAD] ratios. The physiological roles of simultaneous PHA accumulation and degradation are also discussed.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk