Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4713-8. doi: 10.1073/pnas.0808671106. Epub 2009 Mar 5.

A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas.

Author information

Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.


Cilia and flagella are dynamic organelles that are assembled and disassembled during cell differentiation, during stress, and during the cell cycle. Although intraflagellar transport (IFT) is well documented to be responsible for transport of ciliary/flagellar precursors from the cell body to the flagella, little is known about the molecular mechanisms for mobilizing the cell body-localized precursors to make them available for transport during organelle assembly or for disassembling the microtubule-based axoneme during shortening. Here, we show that Chlamydomonas kinesin-13 (CrKinesin-13), a member of the kinesin-13 family of microtubule depolymerizing kinesins best known for their roles in the cell cycle, functions in flagellar disassembly and flagellar assembly. Activation of a cell to generate new flagella induces rapid phosphorylation of CrKinesin-13, and activation of flagellar shortening induces the immediate transport of CrKinesin-13 via intraflagellar transport from the cell body into the flagella. Cells depleted of CrKinesin-13 by RNAi assemble flagella after cell division but are incapable of the rapid assembly of flagella that normally occurs after flagellar detachment. Furthermore, they are inhibited in flagellar shortening. Thus, CrKinesin-13 is dynamically regulated during flagellar assembly and disassembly in Chlamydomonas and functions in each.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center