Send to

Choose Destination
See comment in PubMed Commons below
J Exp Bot. 2009;60(8):2433-49. doi: 10.1093/jxb/erp045. Epub 2009 Mar 2.

Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation.

Author information

Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.


Foliage structure, chemistry, photosynthetic potentials (V(cmax) and J(max)), and mesophyll diffusion conductance (g(m)) were quantified for 35 broad-leaved species from four sites with contrasting rainfall and soil fertility in eastern Australia. The aim of the study was to estimate the extent to which g(m) and related leaf properties limited photosynthesis (A), focusing on highly sclerophyllous species typical of the 'slow-return' end of the leaf economics spectrum. Leaf dry mass per unit area (M(A)) varied approximately 5-fold, leaf life span (L(L)) and N (N(M)) and P (P(M)) contents per dry mass approximately 8-fold, and various characteristics of foliage photosynthetic machinery 6- to 12-fold across the data set. As is characteristic of the 'leaf economics spectrum', more robust leaves with greater M(A) and longevity were associated with lower nutrient contents and lower foliage photosynthetic potentials. g(m) was positively correlated with V(cmax) and J(max), and these correlations were stronger on a mass basis. Only g(m)/mass was negatively associated with M(A). CO(2) drawdown from substomatal cavities to chloroplasts (C(i)-C(C)) characterizing mesophyll CO(2) diffusion limitations was larger in leaves with greater M(A), lower g(m)/mass, and lower photosynthetic potentials. Relative limitation of A due to finite mesophyll diffusion conductance, i.e. 1-A(infinite g(m))/A(actual g(m)), was always >0.2 and up to 0.5 in leaves with most robust leaf structure, demonstrating the profound effect of finite g(m) on realized photosynthesis rates. Data from different sites were overlapping in bivariate relationships, and the variability of average values between the sites was less than among the species within the sites. Nevertheless, photosynthesis was more strongly limited by g(m) in low rain/high nutrient and high rain/low nutrient sites that supported vegetation with more sclerophyllous foliage. These data collectively highlight a strong relationship between leaf structure and g(m), and demonstrate that realized photosynthesis rates are strongly limited by g(m) in this highly sclerophyllous flora.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center