Send to

Choose Destination
J Biol Chem. 2009 May 1;284(18):12363-72. doi: 10.1074/jbc.M808179200. Epub 2009 Feb 27.

Structure of the tyrosine-sulfated C5a receptor N terminus in complex with chemotaxis inhibitory protein of Staphylococcus aureus.

Author information

Department of Medicinal Chemistry and Chemical Biology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.


Complement component C5a is a potent pro-inflammatory agent inducing chemotaxis of leukocytes toward sites of infection and injury. C5a mediates its effects via its G protein-coupled C5a receptor (C5aR). Although under normal conditions highly beneficial, excessive levels of C5a can be deleterious to the host and have been related to numerous inflammatory diseases. A natural inhibitor of the C5aR is chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). CHIPS is a 121-residue protein excreted by S. aureus. It binds the N terminus of the C5aR (residues 1-35) with nanomolar affinity and thereby potently inhibits C5a-mediated responses in human leukocytes. Therefore, CHIPS provides a starting point for the development of new anti-inflammatory agents. Two O-sulfated tyrosine residues located at positions 11 and 14 within the C5aR N terminus play a critical role in recognition of C5a, but their role in CHIPS binding has not been established so far. By isothermal titration calorimetry, using synthetic Tyr-11- and Tyr-14-sulfated and non-sulfated C5aR N-terminal peptides, we demonstrate that the sulfate groups are essential for tight binding between the C5aR and CHIPS. In addition, the NMR structure of the complex of CHIPS and a sulfated C5aR N-terminal peptide reveals the precise binding motif as well as the distinct roles of sulfated tyrosine residues sY11 and sY14. These results provide a molecular framework for the design of novel CHIPS-based C5aR inhibitors.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center