Send to

Choose Destination
Knee. 2009 Oct;16(5):381-6. doi: 10.1016/j.knee.2009.02.002. Epub 2009 Feb 27.

Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.

Author information

Department of Orthopaedic Surgery, National University of Singapore, Singapore.


Ground reaction forces (GRF), knee flexion angles, angular velocities and joint powers are unknown at large landing heights, which are infeasible for laboratory testing. However, this information is important for understanding lower extremity injury mechanisms. We sought to determine regression relationships of landing height with these parameters during landing so as to facilitate estimation of these parameters at large landing heights. Five healthy male subjects performed landing tasks from heights of 0.15-1.05 m onto a force-plate. Motion capture system was used to obtain knee flexion angles during landing via passive markers placed on the lower body. An iterative regression model, involving simple linear/exponential/natural logarithmic functions, was used to fit regression equations to experimental data. Peak GRF followed an exponential regression relationship (R(2)=0.90-0.99, p<0.001; power=0.987-0.998). Peak GRF slope and impulse also had an exponential relationship (R(2)=0.90-0.96, p<0.001; power=0.980-0.997 and R(2)=0.90-0.99, p<0.001; power=0.990-1.000 respectively) with landing height. Knee flexion angle at initial contact and at peak GRF had an inverse-exponential regression relationship (R(2)=0.81-0.99, p<0.001-p=0.006; power=0.834-0.978 and R(2)=0.84-0.97, p<0.001-p=0.004; power=0.873-0.999 respectively). There was also an inverse-exponential relationship between peak knee flexion angular velocity and landing height (R(2)=0.86-0.96, p<0.001; power=0.935-0.994). Peak knee joint power demonstrated a substantial linear relationship (R(2)=0.98-1.00, p<0.001; power=0.990-1.000). The parameters analyzed in this study are highly dependent on landing height. The exponential increase in peak GRF parameters and the relatively slower increase in knee flexion angles, angular velocities and joint power may synergistically lead to an exacerbated lower extremity injury risk at large landing heights.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center