Send to

Choose Destination
J Struct Biol. 2009 May;166(2):183-94. doi: 10.1016/j.jsb.2009.02.006. Epub 2009 Feb 25.

The 7-stranded structure of relaxed scallop muscle myosin filaments: support for a common head configuration in myosin-regulated muscles.

Author information

Institute of Biomedical Engineering, Imperial College London, Bessemer Building, London SW7 2AZ, UK.


Isolated relaxed myosin filaments from the myosin-regulated scallop striated adductor muscle have been reconstructed using electron microscopy and single particle analysis of negatively stained filaments. Three-dimensional reconstruction using 7-fold rotational symmetry but without imposed helical symmetry confirmed that the myosin head array is a 7-stranded, right-handed long-pitch 24/1 helix (or left-handed short-pitch 10/1 helix) with the whole structure having an axial repeat of 1440A. Reconstruction using the full helical symmetry revealed details of the myosin head density distribution within the head crowns in the relaxed scallop myosin filament. The resulting density distribution can best be explained by an arrangement in which the two heads from the same myosin molecule interact together within each crown in a compact parallel fashion along the filament axis. The configuration is consistent with the published configuration of the two heads within vertebrate smooth muscle myosin molecules observed in two-dimensional crystals of smooth muscle myosin and in the structure of tarantula myosin filaments. All these three muscle types are myosin-regulated, providing further support for a general motif of intramolecular interacting-heads structure in the relaxed state of myosin-regulated muscles as was proposed earlier by Woodhead et al. [Woodhead, J.L., Zhao, F.-Q., Craig, R., Egelman, E.H., Alamo, L., Padron, R.. 2005. Atomic model of a myosin filament in the relaxed state. Nature 436, 1195-1199]. However, the orientation of the Wendt structure is different from that found by Woodhead in that the outer head projects outwards and the inner head lies closer to the filament backbone, as in earlier work done on the insect flight muscle myosin filaments [AL-Khayat, H.A., Hudson, L., Reedy, M.K., Irving, T.C., Squire, J.M., 2003. Myosin head configuration in relaxed insect flight muscle: X-ray modelled resting crossbridges in a pre-powerstroke state are poised for actin binding. Biophys. J. 85, 1063-1079]. Possible species specific details that may differ between the scallop and the tarantula myosin filaments are also discussed.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center