Send to

Choose Destination
Dev Biol. 2009 May 15;329(2):386-99. doi: 10.1016/j.ydbio.2009.02.009. Epub 2009 Feb 20.

Complex interplay of three transcription factors in controlling the tormogen differentiation program of Drosophila mechanoreceptors.

Author information

Division of Biological Sciences, Section of Cell and Developmental Biology, Mail Code 0349, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.


We have investigated the expression and function of the Sox15 transcription factor during the development of the external mechanosensory organs of Drosophila. We find that Sox15 is expressed specifically in the socket cell, and have identified the transcriptional cis-regulatory module that controls this activity. We show that Suppressor of Hairless [Su(H)] and the POU-domain factor Ventral veins lacking (Vvl) bind conserved sites in this enhancer and provide critical regulatory input. In particular, we find that Vvl contributes to the activation of the enhancer following relief of Su(H)-mediated default repression by the Notch signaling event that specifies the socket cell fate. Loss of Sox15 gene activity was found to severely impair the electrophysiological function of mechanosensory organs, due to both cell-autonomous and cell-non-autonomous effects on the differentiation of post-mitotic cells in the bristle lineage. Lastly, we find that simultaneous loss of both Sox15 and the autoregulatory activity of Su(H) reveals an important role for these factors in inhibiting transcription of the Pax family gene shaven in the socket cell, which serves to prevent inappropriate expression of the shaft differentiation program. Our results indicate that the later phases of socket cell differentiation are controlled by multiple transcription factors in a collaborative, and not hierarchical, manner.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center