Send to

Choose Destination
Int J Food Microbiol. 2009 Apr 15;130(3):179-87. doi: 10.1016/j.ijfoodmicro.2009.01.024. Epub 2009 Jan 30.

Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must.

Author information

Dipartimento di Scienze degli Alimenti, Università degli Studi di Teramo, Via C.R. Lerici 1, 64023 Mosciano Sant'Angelo, Teramo, Italy.


The objective of this study was to examine the Saccharomyces and non-Saccharomyces yeast populations involved in a spontaneous fermentation of a traditional high sugar must (Vino cotto) produced in central Italy. Molecular identification of a total of 78 isolates was achieved by a combination of PCR-RFLP of the 5.8S ITS rRNA region and sequencing of the D1/D2 domain of the 26S rRNA gene. In addition, the isolates were differentiated by RAPD-PCR. Only a restricted number of osmotolerant yeast species, i.e. Candida apicola, Candida zemplinina and Zygosaccharomyces bailii, were found throughout all the fermentation process, while Saccharomyces cerevisiae prevailed after 15 days of fermentation. A physiological characterization of isolates was performed in relation to the resistance to osmotic stress and ethanol concentration. The osmotolerant features of C. apicola, C. zemplinina and Z. bailii were confirmed, while S. cerevisiae strains showed three patterns of growth in response to different glucose concentrations (2%, 20%, 40% and 60% w/v). The ability of some C. apicola and C. zemplinina strains to grow at 14% v/v ethanol is noteworthy. The finding that some yeast biotypes with higher multiple stress tolerance can persist in the entire winemaking process suggests possible future candidates as starter for Vino cotto production.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center