Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2009 May;329(2):571-9. doi: 10.1124/jpet.108.146456. Epub 2009 Feb 12.

Cilostazol ameliorates metabolic abnormalities with suppression of proinflammatory markers in a db/db mouse model of type 2 diabetes via activation of peroxisome proliferator-activated receptor gamma transcription.

Author information

Department of Pharmacology, College of Medicine, Pusan National University, Seo-Gu, Busan, Korea.


In a previous study, cilostazol promoted differentiation of 3T3-L1 fibroblasts into adipocytes and improved insulin sensitivity by stimulating peroxisome proliferator-activated receptor (PPAR) gamma transcription. This study evaluated the in vivo efficacy of cilostazol to protect a db/db mouse model of type 2 diabetes against altered metabolic abnormalities and proinflammatory markers via activation of PPARgamma transcription. Eight-week-old db/db mice were treated with cilostazol or rosiglitazone for 12 days. Cilostazol significantly decreased plasma glucose and triglyceride levels, as did rosiglitazone, a PPARgamma agonist. Elevated plasma insulin and resistin levels were significantly decreased by cilostazol, and decreased adiponectin mRNA expression was elevated along with increased plasma adiponectin. Cilostazol significantly increased both adipocyte fatty acid binding protein and fatty acid transport protein-1 mRNA expressions with increased glucose transport 4 in the adipose tissue. Cilostazol and rosiglitazone significantly suppressed proinflammatory markers (superoxide, tumor necrosis factor-alpha, and vascular cell adhesion molecule-1) in the carotid artery of db/db mice. In an in vitro study with 3T3-L1 fibroblasts, cilostazol significantly increased PPARgamma transcription activity, as did rosiglitazone. The transcription activity stimulated by cilostazol was attenuated by KT5720 [(9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9, 12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo [3,4-I][1,6]-benzodiazocine-10-carboxylic acid hexyl ester], a cAMP-dependent protein kinase inhibitor, and GW9662 (2-chloro-5-nitrobenzanilide), an antagonist of PPARgamma activity, indicative of implication of the phosphatidylinositol 3-kinase/Akt signal pathway. These results suggest that cilostazol may improve insulin sensitivity along with anti-inflammatory effects in type 2 diabetic patients via activation of both cAMP-dependent protein kinase and PPARgamma transcription.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center