Send to

Choose Destination
Clin Exp Immunol. 2009 Mar;155(3):412-22. doi: 10.1111/j.1365-2249.2008.03793.x.

Increase in tumour-infiltrating lymphocytes with regulatory T cell immunophenotypes and reduced zeta-chain expression in nasopharyngeal carcinoma patients.

Author information

Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.


The pathological significance of the mechanisms of tumour immune-evasion and/or immunosuppression, such as loss of T cell signalling and increase in regulatory T cells (T(regs)), has not been well established in the nasopharyngeal carcinoma (NPC) microenvironment. To evaluate the T(reg) immunophenotypes in tumour-infiltrating lymphocytes (TILs), we performed a double-enzymatic immunostaining for detection of forkhead box P3 (FoxP3) and other markers including CD4, CD8, and CD25 on 64 NPC and 36 non-malignant nasopharyngeal (NP) paraffin-embedded tissues. Expression of CD3 zeta and CD3 epsilon was also determined. The prevalence of CD4(+)FoxP3(+) cells in CD4(+) T cells and the ratio of FoxP3(+)/CD8(+) were increased significantly in NPC compared with those in NP tissues (P < 0.001 and P = 0.025 respectively). Moreover, the ratio of FoxP3(+)/CD25(+)FoxP3(-) in NPC was significantly lower than that in NP tissues (P = 0.005), suggesting an imbalance favouring activated phenotype of T cells in NPC. A significant negative correlation between the abundance of FoxP3(+) and CD25(+)FoxP3(-) cells (P < 0.001) was also identified. When histological types of NPC were considered, a lower ratio of FoxP3(+)/CD25(+)FoxP3(-) was found in non-keratinizing and undifferentiated carcinomas. Increased CD4(+)FoxP3(+)/CD4(+) proportion and FoxP3(+)/CD8(+) ratio were associated with keratinizing squamous cell carcinoma. A reduced expression of CD3 zeta in TILs was found in 20.6% of the NPC tissues but none of the NP tissues. These data provide evidence for the imbalances of T(reg) and effector T cell phenotypes and down-regulation of signal-transducing molecules in TILs, supporting their role in suppression of immune response and immune evasion of NPC.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center