Two steady-entrainment phases and graded masking effects by light generate different circadian chronotypes in Octodon degus

Chronobiol Int. 2009 Feb;26(2):219-41. doi: 10.1080/07420520902768203.

Abstract

Processes involved in the operation of the circadian pacemaker are well characterized; however; little is known about what mechanisms drive the overt diurnal, nocturnal, or crepuscular behavior in a species. In this context, dual-phasing rodents, such as Octodon degus, emerge as a useful model to decipher these keys. Two main chronotypes, nocturnal and diurnal, have been traditionally described in laboratory-housed degus based on the percentage of activity displayed by the animals during the scotophase or photophase. However, if one considers also the entrainment phase angle during the first days following a change from LD to DD conditions, a third chronotype (intermediate)-or more properly, a continuous grading of circadian expressions between diurnal and nocturnal chronotype-can be observed. Our experiments suggest the pacemaker of the diurnal animal is entrained to the photophase, and light does not exert a negative masking effect. The pacemaker of the nocturnal degus, on the other hand, is entrained to the scotophase, and light exerts a strong negative masking effect. Finally, the intermediate chronotype is characterized by variable negative masking effect of light overlapping a pacemaker entrained to the photophase. The phase shift inversion from diurnal to nocturnal chronotype is related to the availability of a wheel in the cage, and the effect may be located downstream from the clock. However, body temperature rhythm recordings, less affected by masking effects, point to an involvement of the circadian pacemaker in chronotype differentiation, as transient entrainment cycles, and not an abrupt phase shift, were detected after providing access to the wheel. The diurnality of degus seems to be the result of a variety of mechanisms, which may explain how different processes can lead to similar chronotypes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Behavior, Animal / physiology
  • Biological Clocks / physiology*
  • Body Temperature
  • Circadian Rhythm / physiology*
  • Female
  • Light*
  • Male
  • Motor Activity / physiology
  • Octodon / physiology*