Format

Send to

Choose Destination
J Membr Biol. 1991 Jun;122(3):193-202.

Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin.

Author information

1
Center for Research and Advanced Studies, Department of Physiology and Biophysics, D.F., Mexico.

Abstract

The making and sealing of a tight junction (TJ) requires cell-cell contacts and Ca2+, and can be gauged through the development of transepithelial electrical resistance (TER) and the accumulation of ZO-1 peptide at the cell borders. We observe that pertussis toxin increases TER, while AIF3 and carbamil choline (carbachol) inhibit it, and 5-guanylylimidodiphosphate (GTPTs) blocks the development of a cell border pattern of ZO-1, suggesting that G-proteins are involved. Phospholipase C (PLC) and protein kinase C (PKC) probably participate in these processes since (i) activation of PLC by thyrotropin-1 releasing hormone increases TER, and its inhibition by neomycin blocks the development of this resistance; (ii) 1,2-dioctanoylglycerol, an activator of PKC, stimulates TER development, while polymyxin B and 1-(5-isoquinoline sulfonyl)-2-methyl-piperazine dihydrochloride (H7), which inhibit this enzyme, abolish TER. Addition of 3-isobutyl-1-methyl-xanthine, dB-cAMP or forskolin do not enhance the value of TER, but have just the opposite effect. Trifluoperazine and calmidazoline inhibit TER development, suggesting that calmodulin (CaM) also plays a role in junction formation. These results indicate that junction formation may be controlled by a network of reactions where G-proteins, phospholipase C, adenylate cyclase, protein kinase C and CaM are involved.

PMID:
1920385
DOI:
10.1007/bf01871420
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center