Send to

Choose Destination
J Oleo Sci. 2009;58(3):123-32.

Lipase specificity in the transacylation of triacylglycerin.

Author information

Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-1 Kichijoji-kitamachi 3, Musashino-shi, Tokyo 180-8633, Japan.


The Lipase-catalyzed transesterification method is utilized as a safe and effective method for preparing various structured oils. As each lipase shows different fatty acid specificity, it is important to select an appropriate lipase according to fatty acid species incorporated into oils. In the present study fatty acid specificities of lipases obtained from different origins were evaluated by transacylation between oils and various fatty acids. Of 12 kinds of lipases used, 5 lipases have 1,3-regio specificity and 7 lipases have non-regio specificity for hydrolysis of oils. Fatty acid substrates of transacylation were 8 saturated fatty acids with 6 to 18 carbon numbers, and C18 unsaturated fatty acids with different double bonds such as oleic, linoleic and linolenic acids. As results shown below, most lipases used gave high transacylation ratios for lauric acid when saturated fatty acids are compared and a different tendency in C18 unsaturated fatty acids. Regarding the fatty acid specificity of different lipases, fatty acid specificity of each lipase differed by its origin. Almost all lipases with or without regio specificities showed high selectivity for C10 and C12, especially C12 saturated fatty acid, and a little selectivity for C14-20 saturated fatty acids. On the other hand, C6 saturated fatty acid was little incorporated into TAG, and C18 fatty acids with higher unsaturation were incorporated easily into TAG. Transacylation activity defined as an acydolysis unit (AU) of an activity which is able to incorporate 1 micromol of C12 saturated fatty acid into TAG for 24h represents high relationship with the known hydrolysis activity. It is considered that structured lipids can be prepared effectively by transacylation based on the proper selection of lipase with higher transacylation or hydrolysis activities for specific fatty acids.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center