Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2009 Feb 9;10(2):390-9. doi: 10.1021/bm801151r.

Mutational analysis and allosteric effects in the HIV-1 capsid protein carboxyl-terminal dimerization domain.

Author information

  • 1Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.

Abstract

The carboxyl-terminal domain (CTD, residues 146-231) of the HIV-1 capsid (CA) protein plays an important role in the CA-CA dimerization and viral assembly of the human immunodeficiency virus type 1. Disrupting the native conformation of the CA is essential for blocking viral capsid formation and viral replication. Thus, it is important to identify the exact nature of the structural changes and driving forces of the CTD dimerization that take place in mutant forms. Here, we compare the structural stability, conformational dynamics, and association force of the CTD dimers for both wild-type and mutated sequences using all-atom explicit-solvent molecular dynamics (MD). The simulations show that Q155N and E159D at the major homology region (MHR) and W184A and M185A at the helix 2 region are energetically less favorable than the wild-type, imposing profound negative effects on intermolecular CA-CA dimerization. Detailed structural analysis shows that three mutants (Q155N, E159D, and W184A) display much more flexible local structures and weaker CA-CA association than the wildtype, primarily due to the loss of interactions (hydrogen bonds, side chain hydrophobic contacts, and pi-stacking) with their neighboring residues. Most interestingly, the MHR that is far from the interacting dimeric interface is more sensitive to the mutations than the helix 2 region that is located at the CA-CA dimeric interface, indicating that structural changes in the distinct motif of the CA could similarly allosterically prevent the CA capsid formation. In addition, the structural and free energy comparison of the five residues shorter CA (151-231) dimer with the CA (146-231) dimer further indicates that hydrophobic interactions, side chain packing, and hydrogen bonds are the major, dominant driving forces in stabilizing the CA interface.

PMID:
19199580
PMCID:
PMC2651736
DOI:
10.1021/bm801151r
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center