Format

Send to

Choose Destination
See comment in PubMed Commons below
J Invest Surg. 2009 Jan-Feb;22(1):46-55. doi: 10.1080/08941930802709470.

Nitric oxide mechanism of protection in ischemia and reperfusion injury.

Author information

  • 1Department of Research, Michigan State University/Kalamazoo Center for Medical Studies, Kalamazoo, Michigan, USA.

Abstract

In 1992 nitric oxide (NO) was declared molecule of the year by Science magazine, and ever since research on this molecule continues to increase. Following this award, NO was shown to be a mediator/protector of ischemia and reperfusion injury in many organs, such as the heart, liver, lungs, and kidneys. Controversy has existed concerning the actual protective effects of NO. However, literature from the past 15 years seems to reinforce the consensus that NO is indeed protective. Some of the protective actions of NO in ischemia and reperfusion are due to its potential as an antioxidant and anti-inflammatory agent, along with its beneficial effects on cell signaling and inhibition of nuclear proteins, such as NF-kappa B and AP-1. New therapeutic potentials for this drug are also continuously emerging. Exogenous NO and endogenous NO may both play protective roles during ischemia and reperfusion injury. Sodium nitroprusside and nitroglycerin have been used clinically with much success; though only recently have they been tested and proven effective in attenuating some of the injuries associated with ischemia and reperfusion. NO inhalation has, in the past, mostly been used for its pulmonary effects, but has also recently been shown to be protective in other organs. The potential of NO in the treatment of ischemic disease is only just being realized. Elucidation of the mechanism by which NO exerts its protective effects needs further investigation. Therefore, this paper will focus on the mechanistic actions of NO in ischemia and reperfusion injury, along with the compound's potential therapeutic benefits.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Write to the Help Desk