Format

Send to

Choose Destination
See comment in PubMed Commons below
Can J Microbiol. 2009 Jan;55(1):1-11. doi: 10.1139/W08-117.

Microbial genesis, life and death in glacial ice.

Author information

1
Physics Department, University of California, Berkeley, CA94720, USA. bprice@berkeley.edu

Abstract

Arguments are given that terrestrial RNA and DNA may have originated in a frozen environment more than 4 billion years ago. Scenarios are developed for atmospheric transport of microbes onto glacial ice, their adaptation to subzero temperatures in the ice, and their incorporation into one of three habitats - liquid veins, mineral grain surfaces, or isolated inside 1 of the crystals that make up polycrystalline ice. The Arrhenius dependence of microbial metabolic rate on temperature is shown to match that required to repair damage owing to spontaneous DNA depurination and amino acid racemization. Even for the oldest glacial ice, microbial lifetime is shown not to be shortened by radiation damage from 238U, 232Th, or 40K in mineral dust in ice, by phage-induced lysis, or by penetrating cosmic radiation. Instead, death of those cells adapted to the hostile conditions in glacial ice is probably due to exhaustion of available nutrients. By contrast, in permafrost microbial death is more likely due to alpha-particle radiation damage from U and Th in the soil and rocks intermixed with ice. For residence times in ice longer than a million years, spore formers may be unable to compete in longevity with vegetative cells that are able to repair DNA damage via survival metabolism.

PMID:
19190696
DOI:
10.1139/W08-117
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center