Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Pharmacol. 2009 May;75(5):1031-41. doi: 10.1124/mol.108.049858. Epub 2009 Feb 3.

Mitogen-activated protein kinase pathways contribute to hypercontractility and increased Ca2+ sensitization in murine experimental colitis.

Author information

1
Department of Biochemistry and Molecular Biology, University of Calgary, Faculty of Medicine, Calgary, Alberta, Canada.

Abstract

Inflammatory bowel disease (IBD) is associated with intestinal smooth muscle dysfunction. Many smooth muscle contractile events are associated with alterations in Ca(2+)-sensitizing pathways. The aim of the present study was to assess the effect of colitis on Ca(2+) sensitization and the signaling pathways responsible for contractile dysfunction in murine experimental colitis. Colitis was induced in BALB/c mice by providing 5% dextran sulfate sodium (DSS) in drinking water for 7 days. Contractile responses of colonic circular smooth muscle strips to 118 mM K(+) and carbachol (CCh) were assessed. DSS induced a T(H)2 colitis [increased interleukin (IL)-4 and IL-6] with no changes in T(H)1 cytokines. Animals exposed to DSS had increased CCh-induced contraction (3.5-fold) and CCh-induced Ca(2+)-sensitization (2.2-fold) responses in intact and alpha-toxin permeabilized colonic smooth muscle, respectively. The contributions of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) to CCh-induced contractions were significantly increased during colitis. Ca(2+)-independent contraction induced by microcystin was potentiated (1.5-fold) in mice with colitis. ERK and p38MAPK (but not Rho-associated kinase) contributed to this potentiation. ERK1/2 and p38MAPK expression were increased in the muscularis propria of colonic tissue from both DSS-treated mice and patients with IBD (ulcerative colitis >> Crohn's disease). Murine T(H)2 colitis resulted in colonic smooth muscle hypercontractility with increased Ca(2+) sensitization. Both ERK and p38MAPK pathways contributed to this contractile dysfunction, and expression of these molecules was altered in patients with IBD.

PMID:
19190174
DOI:
10.1124/mol.108.049858
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center