Send to

Choose Destination
J Cardiovasc Pharmacol. 2009 Feb;53(2):121-31. doi: 10.1097/FJC.0b013e31819715c4.

Antigrowth properties of BAY 41-2272 in vascular smooth muscle cells.

Author information

Cardiovascular Disease Research Program, J.L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.


Vascular smooth muscle (VSM) growth is integral in the pathophysiology of blood vessel diseases, and identifying approaches that have capacity to regulate VSM growth is critically essential. Cyclic nucleotide signaling has been generally considered protective in cardiac and vascular tissues and has been the target of numerous basic science and clinical studies. In this project, the influence of BAY 41-2272 (BAY), a recently described soluble guanylate cyclase stimulator and inducer of cyclic guanosine monophosphate (cGMP) synthesis, on VSM cell growth was analyzed. In rat A7R5 VSM cells, BAY significantly reduced proliferation in a dose- and time-dependent fashion. BAY activated cGMP and cyclic adenosine monophosphate (cAMP) signaling evidenced through elevated cGMP and cAMP content, increased expression of cyclic nucleotide-dependent protein kinases, and differential vasodilator-stimulated phosphoprotein phosphorylation. BAY significantly elevated cyclin E expression, decreased expression of the regulatory cyclin-dependent kinases -2 and -6, increased expression of cell cycle inhibitory p21 WAF1/Cip1 and p27 Kip1, and reduced expression of phosphorylated focal adhesion kinase. These comprehensive findings provide first evidence for the antigrowth cell cycle-regulatory properties of the neoteric agent, BAY 41-2272, in VSM and lend support for its continued study in the clinical and basic cardiovascular sciences.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Wolters Kluwer Icon for PubMed Central
Loading ...
Support Center