Send to

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2009 Mar 1;81(5):2004-12. doi: 10.1021/ac8026564.

Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies.

Author information

The Molecular Foundry, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.


Capillary enzymatic microreactors containing trypsin and endoproteinase LysC immobilized on a porous polymer monolith have been prepared and used for the characterization and identification of proteins such as cytochrome c, bovine serum albumin, and high-molecular weight human immunoglobulin G. The hydrophilicity of diol functionalities originating from the hydrolyzed poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was not sufficient to avoid adsorption of hydrophobic albumin in a highly aqueous mobile phase. Therefore, this monolith was first hydrophilized via photografting of poly(ethylene glycol) methacrylate followed by photografting of a 4-vinyl-2,2-dimethylazlactone to provide the pore surface with reactive functionalities required for immobilization. This new approach reduced the undesired nonspecific adsorption of proteins and peptides and facilitated control of both the enzyme immobilization and protein digestion processes. The enzymatic reactors were coupled off-line with MALDI/TOF MS and/or on-line with ESI/TOF MS. Experimental conditions for digestion were optimized using cytochrome c and bovine serum albumin as model proteins. The optimized reactors were then integrated into a multidimensional system comprised of a monolithic capillary enzyme reactor, an in-line nanoLC separation of peptides using a poly(lauryl methacrylate-co-ethylene dimethacrylate) monolithic column, and ESI/TOF MS. With the use of this system, immunoglobulin G was digested at room temperature in 6 min to an extent similar to that achieved with soluble enzyme at 37 degrees C after 24 h.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center