Format

Send to

Choose Destination
Neuron. 2009 Jan 29;61(2):259-71. doi: 10.1016/j.neuron.2008.12.004.

Axon initial segment Ca2+ channels influence action potential generation and timing.

Author information

1
Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239, USA. benderke@ohsu.edu

Abstract

Although action potentials are typically generated in the axon initial segment (AIS), the timing and pattern of action potentials are thought to depend on inward current originating in somatodendritic compartments. Using two-photon imaging, we show that T- and R-type voltage-gated Ca(2+) channels are colocalized with Na(+) channels in the AIS of dorsal cochlear nucleus interneurons and that activation of these Ca(2+) channels is essential to the generation and timing of action potential bursts known as complex spikes. During complex spikes, where Na(+)-mediated spikelets fire atop slower depolarizing conductances, selective block of AIS Ca(2+) channels delays spike timing and raises spike threshold. Furthermore, AIS Ca(2+) channel block can decrease the number of spikelets within a complex spike and can even block single, simple spikes. Similar results were found in cortex and cerebellum. Thus, voltage-gated Ca(2+) channels at the site of spike initiation play a key role in generating and shaping spike bursts.

PMID:
19186168
PMCID:
PMC2730113
DOI:
10.1016/j.neuron.2008.12.004
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center