Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2009 Feb 1;48(4):778-85.

Surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modelling.

Author information

1
Department of Advanced Physical Technologies and New Materials, Italian National Agency for New Technologies, Energy and the Environment (ENEA), CR Brindisi, SS. 7 Appia, 72100 Brindisi, Italy. lucia.protopapa@brindisi.enea.it

Abstract

Composite films consisting of a ceramic matrix with embedded metal nanoparticles have received increased interest due to their numerous potential applications in the field of optics and optoelectronics. Numerous studies have been dedicated to the fabrication of these composite materials and it has been shown that nanocermet films can be obtained by successive deposition of alternate dielectric and metal films of thicknesses opportunely chosen. In this case, stacks of dielectric layers alternated with layers of metal nanoclusters (NCs) are obtained. However, until now, optical characterization of these kinds of multilayer stack has been used to retrieve mainly qualitative information on the dimension, shape, and geometric distribution of nanoparticles inside the dielectric matrix. An easy-to-handle model that quantitatively links the optical properties to the main features of the NCs embedded in the matrix is presented. This model can be applied to multilayer stacks of dielectric layers alternated with metal NC layers and is shown to be a valid alternative to a recently published model [Nanotechnology 19, 125709 (2008)NNOTER0957-448410.1088/0957-4484/19/22/225302] that was applied to the case of a three-layer structure (dielectric/metal:dielectric/dielectric).

PMID:
19183608
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center