Format

Send to

Choose Destination
J Biol Chem. 2009 Mar 27;284(13):8470-7. doi: 10.1074/jbc.M808981200. Epub 2009 Jan 28.

Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III.

Author information

1
College of Pharmacy, Division of Life & Pharmaceutical Sciences, and Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Science Building C, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Korea.

Abstract

The mitochondria are the major intracellular source of reactive oxygen species (ROS), which are generated during cellular respiration. The role of peroxiredoxin (Prx) III, a 2-Cys Prx family member, in the scavenging of mitochondrial H(2)O(2) has recently been emphasized. While eliminating H(2)O(2), Prx can become overoxidized and inactivated by modifying the active cysteine into cysteine sulfinic acid (Cys-SO(2)H). When 2-Cys Prxs are inactivated in vitro, sulfiredoxin (Srx) reduces the cysteine sulfinic acid to cysteines. However, whereas Srx is localized in the cytoplasm, Prx III is present exclusively in the mitochondria. Although Srx reduces sulfinic Prx III in vitro, it remains unclear whether the reduction of Prx III in cells is actually mediated by Srx. Our gain- and loss-of-function experiments show that Srx is responsible for reducing not only sulfinic cytosolic Prxs (I and II) but also sulfinic mitochondrial Prx III. We further demonstrate that Srx translocates from the cytosol to mitochondria in response to oxidative stress. Overexpression of mitochondrion-targeted Srx promotes the regeneration of sulfinic Prx III and results in cellular resistance to apoptosis, with enhanced elimination of mitochondrial H(2)O(2) and decreased rates of mitochondrial membrane potential collapse. These results indicate that Srx plays a crucial role in the reactivation of sulfinic mitochondrial Prx III and that its mitochondrial translocation is critical in maintaining the balance between mitochondrial H(2)O(2) production and elimination.

PMID:
19176523
PMCID:
PMC2659205
DOI:
10.1074/jbc.M808981200
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center