Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2009 Mar 17;159(2):540-9. doi: 10.1016/j.neuroscience.2008.12.059. Epub 2009 Jan 7.

Trophic activity derived from bone marrow mononuclear cells increases peripheral nerve regeneration by acting on both neuronal and glial cell populations.

Author information

  • 1Programa de Bioengenharia e Terapia Celular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Centro de Ciências da Saúde, Bl. G, Cidade Universitária, 21949-900 Rio de Janeiro, Brazil.


A rat model of complete sciatic nerve transection was used to evaluate the effect of bone marrow mononuclear cells (BMMC) transplanted to the injury site immediately after lesion. Rats treated with BMMC had both sensory and motor axons reaching the distal stump earlier compared to untreated animals. In addition, BMMC transplantation reduced cell death in dorsal root ganglia (DRG) compared to control animals. Transplanted BMMC remained in the lesion site for several days but there is no evidence of BMMC differentiation into Schwann cells. However, an increase in the number of Schwann cells, satellite cells and astrocytes was observed in the treated group. Moreover, neutralizing antibodies for nerve growth factor (NGF) (but not for brain-derived neurotrophic factor and ciliary-derived neurotrophic factor) added to the BMMC-conditioned medium reduced neurite growth of sensory and sympathetic neurons in vitro, suggesting that BMMC release NGF, improve regeneration of the sciatic nerve in the adult rat and stimulate Schwann and satellite cell proliferation or a combination of both.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center