Send to

Choose Destination
See comment in PubMed Commons below
Eur J Pharmacol. 2009 Mar 1;605(1-3):68-77. doi: 10.1016/j.ejphar.2008.12.037. Epub 2009 Jan 10.

Chronic 13-cis-retinoic acid administration disrupts network interactions between the raphe nuclei and the hippocampal system in young adult mice.

Author information

Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.


Previously, we showed that chronic administration of 13-cis-retinoic acid (13-cis-RA) induces depression-related behaviors in mice and that 13-cis-RA alters components of the serotonergic system in vitro. Work by others has shown that 13-cis-RA reduces hippocampal neurogenesis in mice and orbitofrontal cortex metabolism in humans. In the current study, we measured cytochrome oxidase activity, a metabolic marker that reflects steady state neuronal energy demand, in various regions of the brain to determine the effects of 13-cis-RA on neuronal metabolic activity and network interactions between the raphe nuclei and the hippocampal system. Brain cytochrome oxidase activity in young adult male mice was analyzed following 6 weeks of daily 13-cis-RA (1 mg/kg) or vehicle injection and behavioral testing. Chronic 13-cis-RA administration significantly decreased cytochrome oxidase activity only in the inferior rostral linear nucleus of the raphe. However, covariance analysis of interregional correlations in cytochrome oxidase activity revealed that 13-cis-RA treatment caused a functional uncoupling between the dorsal raphe nuclei and the hippocampus. Furthermore, a path analysis indicated that a network comprising lateral habenula to dorsal raphe to hippocampus was effectively uncoupled in 13-cis-RA treated animals. Finally, cytochrome oxidase activity in the dentate gyrus of 13-cis-RA treated mice was inversely correlated with depression-related behavior. Taken together, these data show that 13-cis-RA alters raphe metabolism and disrupts functional connectivity between the raphe nuclei and the hippocampal formation, which may contribute to the observed increase in depression-related behaviors.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center