Send to

Choose Destination
See comment in PubMed Commons below
Clin Dev Immunol. 2008;2008:769795. doi: 10.1155/2008/769795. Epub 2009 Jan 20.

M-CSF and GM-CSF regulation of STAT5 activation and DNA binding in myeloid cell differentiation is disrupted in nonobese diabetic mice.

Author information

College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL 32610, USA.


Defects in macrophage colony-stimulating factor (M-CSF) signaling disrupt myeloid cell differentiation in nonobese diabetic (NOD) mice, blocking myeloid maturation into tolerogenic antigen-presenting cells (APCs). In the absence of M-CSF signaling, NOD myeloid cells have abnormally high granulocyte macrophage colony-stimulating factor (GM-CSF) expression, and as a result, persistent activation of signal transducer/activator of transcription 5 (STAT5). Persistent STAT5 phosphorylation found in NOD macrophages is not affected by inhibiting GM-CSF. However, STAT5 phosphorylation in NOD bone marrow cells is diminished if GM-CSF signaling is blocked. Moreover, if M-CSF signaling is inhibited, GM-CSF stimulation in vitro can promote STAT5 phosphorylation in nonautoimmune C57BL/6 mouse bone marrow cultures to levels seen in the NOD. These findings suggest that excessive GM-CSF production in the NOD bone marrow may interfere with the temporal sequence of GM-CSF and M-CSF signaling needed to mediate normal STAT5 function in myeloid cell differentiation gene regulation.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Hindawi Publishing Corporation Icon for PubMed Central
    Loading ...
    Support Center