Format

Send to

Choose Destination
Neuroimage. 2009 May 1;45(4):1199-211. doi: 10.1016/j.neuroimage.2008.12.038. Epub 2008 Dec 31.

Identifying reliable independent components via split-half comparisons.

Author information

1
Department of Cognitive Science, 0515, University of California San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0515, USA.

Abstract

Independent component analysis (ICA) is a family of unsupervised learning algorithms that have proven useful for the analysis of the electroencephalogram (EEG) and magnetoencephalogram (MEG). ICA decomposes an EEG/MEG data set into a basis of maximally temporally independent components (ICs) that are learned from the data. As with any statistic, a concern with using ICA is the degree to which the estimated ICs are reliable. An IC may not be reliable if ICA was trained on insufficient data, if ICA training was stopped prematurely or at a local minimum (for some algorithms), or if multiple global minima were present. Consequently, evidence of ICA reliability is critical for the credibility of ICA results. In this paper, we present a new algorithm for assessing the reliability of ICs based on applying ICA separately to split-halves of a data set. This algorithm improves upon existing methods in that it considers both IC scalp topographies and activations, uses a probabilistically interpretable threshold for accepting ICs as reliable, and requires applying ICA only three times per data set. As evidence of the method's validity, we show that the method can perform comparably to more time intensive bootstrap resampling and depends in a reasonable manner on the amount of training data. Finally, using the method we illustrate the importance of checking the reliability of ICs by demonstrating that IC reliability is dramatically increased by removing the mean EEG at each channel for each epoch of data rather than the mean EEG in a prestimulus baseline.

PMID:
19162199
PMCID:
PMC3062525
DOI:
10.1016/j.neuroimage.2008.12.038
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center