Send to

Choose Destination
J Mol Cell Cardiol. 2009 May;46(5):612-20. doi: 10.1016/j.yjmcc.2008.12.014. Epub 2009 Jan 7.

CB(2) cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion.

Author information

Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University Hospital, Geneva, Switzerland.


Preventive treatment with cannabinoid agonists has been reported to reduce the infarct size in a mouse model of myocardial ischemia/reperfusion. Here we investigated the possible cardioprotective effect of selective CB(2) cannabinoid receptor activation during ischemia. We performed left coronary artery ligature in C57Bl/6 mice for 30 min, followed by 24 h of reperfusion. Five minutes before reperfusion, mice received intraperitoneal injection of the CB(2) selective agonist JWH-133 (20 mg/kg) or vehicle. Infarct size was assessed histologically and by cardiac troponin I (cTnI) ELISA. Immunohistochemical analysis of leukocyte infiltration, oxidative stress in situ quantification, real-time RT-PCR analysis of inflammatory mediators as well as western blots for kinase phosphorylation was also performed. In addition, we studied chemotaxis and integrin expression of human neutrophils in vitro. JWH-133 significantly reduced the infarct size (I/area at risk: 19.27%+/-1.91) as compared to vehicle-treated mice (31.77%+/-2.7). This was associated with a reduction of oxidative stress and neutrophil infiltration in the infarcted myocardium, whereas activation of ERK 1/2 and STAT-3 was increased. Preinjection of PI3K inhibitor LY294002, MEK 1/2 inhibitor U0126 and JAK-2 inhibitor AG-490 partially abrogated the JWH-133 mediated infarct size reduction. No changes in cardiac CXCL1, CXCL2, CCL3, TNF-alpha, and ICAM-1 expression levels were found. Furthermore, JWH-133 inhibited the TNF-alpha induced chemotaxis and integrin CD18/CD11b (Mac-1) upregulation on human neutrophils. Our data suggest that JWH-133 administration during ischemia reduces the infarct size in a mouse model of myocardial ischemia/reperfusion through a direct cardioprotective activity on cardiomyocytes and neutrophils.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center