Send to

Choose Destination
Molecules. 2009 Jan 21;14(1):494-508. doi: 10.3390/molecules14010494.

2-amido-3-(1H-indol-3-yl)-N-substituted-propanamides as a new class of falcipain-2 inhibitors. 1. Design, synthesis, biological evaluation and binding model studies.

Author information

School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China.


The Plasmodium falciparum cysteine protease falcipain-2 (FP-2) is an important cysteine protease and an essential hemoglobinase of erythrocytic P. falciparum trophozoites. The discovery of new FP-2 inhibitors is now a hot topic in the search for potential malaria treatments. In this study, a series of novel small molecule FP-2 inhibitors have been designed and synthesized based on three regional optimizations of the lead (R)-2-phenoxycarboxamido-3-(1H-indol-3-yl)-N-benzylpropanamide(1), which was identified using structure-based virtual screening in conjunction with surface plasmon resonance (SPR)-based binding assays. Four compounds--1, 2b, 2k and 2l--showed moderate FP-2 inhibition activity, with IC(50) values of 10.0-39.4 microM, and the inhibitory activity of compound 2k was approximately 3-fold better than that of the prototype compound 1 and may prove useful for the development of micromolar level FP-2 inhibitors. Preliminary SAR data was obtained, while molecular modeling revealed that introduction of H-bond donor or/and acceptor atoms to the phenyl ring moiety in the C region would be likely to produce some additional H-bond interactions, which should consequently enhance molecular bioactivity.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center