Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2009 Apr;30(12):2361-8. doi: 10.1016/j.biomaterials.2008.12.051. Epub 2009 Jan 13.

Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury.

Author information

1
Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, E156 Evanston, IL 60208-3120, USA. l-shea@northwestern.edu

Abstract

Tissue engineering scaffolds with complex geometries can provide an architecture that directs tissue formation. Drug delivery from these scaffolds to promote regeneration is often challenging due to the complex fabrication processes. Surface-mediated DNA delivery from multiple channel bridges was applied to deliver lipoplexes in vivo to the injured spinal cord. The surface properties of the polymer, DNA deposition with or without drying, and the presence of ECM components were investigated. In vitro studies revealed that fibronectin produced greater expression levels and immobilization efficiencies compared with collagen, laminin, and no coating. In addition, lipoplex incubation on ECM-coated PLG increased expression relative to either of the drying methods. Additionally, the incubation method had more homogeneously distributed lipoplexes and a higher number of transfected cells relative to the dried conditions. Translation to three-dimensional bridges led to high levels of transgene expression in vitro. In vivo, lipoplexes immobilized to the bridge produced transgene expression levels in a rat spinal cord hemisection model that were 2-fold greater than naked plasmid. Additionally, expression with lipoplexes persisted for at least three weeks. Surface-mediated delivery can be applied to scaffolds with complex geometries to promote transgene expression in vivo.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center